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A group of diverse principals who represent an institution contract with an agent for the production
of a two-dimensional commodity. One dimension of the agent’s production is verifiable, while the
other is unverifiable. The principals can employ two strategic tools to motivate the agent—a
minimum requirement on the verifiable dimension and a tough gatekeeper. A gatekeeper is a
principal who is elected and granted authority to determine whether the full group considers the
agent’s production. A tough gatekeeper can be used to motivate production in the unverifiable
dimension. We characterize conditions for which the principals use these two strategic tools, und
we examine the economic consequences of partial verifiability.

1. Introduction

m Institutions often delegate decision-making authority to selected members. For example,
universities create tenure committees to evaluate whether to promote assistant professors, honorary
societies select electors to screen new members, corporate shareholders choose boards of directors
to contract with chief executives, communities elect school boards to evaluate and decide whether
to retain school superintendents, and cities elect district attorneys and chiefs of police to enforce
their laws. In these examples. the selected members act as a gatekeeper, which either decides the
fate of an agent itself or decides whether the agent’s performance warrants consideration by the
full institution. Which member(s) of an institution are selected as a gatekeeper? Why do some
institutions have a strong gatekeeper, while other institutions have either a weak gatekeeper or no
gatekeeper at all?

To address these questions we construct a model in which a group of principals, who represent
an institution, contract with an agent to produce a product. The agent’s production is in two
dimensions: one verifiable (i.e., contractible) and the other unverifiable (i.e., noncontractible).
Composed of individuals who value these dimensions differently, the principals must agree on
how much the agent should produce in each of the dimensions. That is, the principals must agree
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on a contract to offer the agent—a document that states requirements of the agent’s production
and the process by which the principals evaluate the agent’s production.

The principals have a straightforward task of motivating the agent to produce in the verifi-
able dimension. Put simply, the principals can specify a performance criterion (i.e., a minimum
requirement) on the verifiable dimension, and commit to consider the agent’s production only if
the production of the verifiable characteristic exceeds this minimum requirement.

Motivating the agent to produce in the unverifiable dimension is not straightforward; the
principals cannot write unverifiable characteristics in a contract. In a single-principal, single-
agent model, Holmstrém and Milgrom (1991) demonstrate that when the principal provides high-
powered incentives (like a minimum requirement) on the verifiable dimension, the agent tends
to overproduce in the verifiable dimension. We demonstrate that with multiple principals, rather
than with a single principal, the principals have a strategic tool to reduce the overproduction in the
verifiable dimension while encouraging production in the unverifiable dimension. The principals
can appoint a gatekeeper and commit to consider the agent’s production as a full group only if
the gatekeeper approves.

In our model, the principals’ contracting options are the level of the minimum requirement
and the identity of the gatekeeper. Should the contract specify a positive minimum requirement
or identify a gatekeeper, the principals commit to evaluate the agent’s production as a full group
only if the minimum requirement is satisfied (if one is specified) and the gatekeeper approves
the agent’s production (if one is appointed).? Knowing the gatekeeper’s preferences, and that the
gatekeeper will accept the agent’s production only if he prefers it to the outside option, the agent
has an incentive to satisfy the gatekeeper. As such, while the minimum requirement enforces
production in the verifiable dimension, the gatekeeper enforces production in the unverifiable
dimension.

We demonstrate that if the principals choose to elect a gatekeeper, they choose a “tough guy.”
Because the principals have different preferences, they also have different minimum amounts (i.e.,
reservation values) on the unverifiable dimension that they are willing to accept. Hence, given an
agreed-upon level of the minimum requirement on the verifiable dimension, the principals elect
a gatekeeper who has a relatively high reservation value on the unverifiable dimension so as to
motivate greater production in the unverifiable dimension (i.e., a tough guy).

Schelling (1960, pp. 142-143) recognizes the strategic delegation of decision-making au-
thority to tough guys:

[A] move that is sometimes available is the delegation of part or all of one’s interest. or part or all of one’s initiative for
decision, to some agent who becomes (or perhaps already is) another player in the game ... The use of a professional
collecting agency by a business firm for the collection of debts is a means of achieving unilateral rather than bilateral
communication with its debtors and of being therefore unavailable to hear pleas and threats from the debtors. . . The use
of thugs and sadists for the collection of extortion or the guarding of prisoners. or the conspicuous delegation of authority

to a military commander of known motivation, exemplifies a common means of making credible a response pattern that
the original source of decision might have been thought to shrink from or to find profitless, once the threat had failed.

For the institutions we model, the use of minimum requirements and gatekeepers varies from
institution to institution. For example, consider the promotion and tenure processes in academia. At
some (but not many) universities, tenured faculty agree on minimum requirements for promotion
and state these up front to assistant professors. With regard to gatekeepers, at many universities
a tenure committee screens a tenure candidate’s performance before the academic department’s
evaluation of the candidate’s record. Many of these tenure committees are powerful and act as
gatekeepers. That is, a tenure candidate is considered for promotion only if the tenure committee
votes favorably.

Our analysis provides insight as to why the use of gatekeepers and minimum requirements
varies from institution to institution. We characterize the equilibrium contracts and the agent’s

! In our model, the principals vote by majority rule on the contract they offer the agent.

2 The full-group evaluation process is not a contracting option. The majority-rule evaluation process is specified
in the next section.
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resulting production for different preferences and production capabilities. For our domain of
possible principal and agent utility profiles, we demonstrate in our main theorem that there are
four types of equilibrium contracts and agent production. The equilibrium contracts vary by their
use of a minimum requirement and a gatekeeper.

To determine the economic effects of partial verifiability (i.e., one dimension is verifiable
and the other is unverifiable), we first examine the complete-verifiability case. With complete
verifiability, the principals can set minimum requirements on both dimensions to torce the agent
to produce any allocation she is willing to produce. Then, in our primary analysis, we establish
that with partial verifiability, there are allocations the agent is willing to produce, but the principals
cannot implement. In this partial-verifiability case, for an established minimum requirement on
the verifiable dimension, there may not exist a gatekeeper able to induce the agent to produce the
greatest amount of the unverifiable characteristic she is willing to produce. Hence, in comparing
the agent’s production in the complete- and partial-verifiability cases, with partial verifiability, the
agent tends to produce less in the unverifiable dimension and more in the verifiable dimension. In
addition, the agent sometimes can use the partial verifiability to her advantage and earn a positive
economic surplus.

Economists recognize that in many settings, groups can improve their power by the strategic
use of representatives (e.g., gatekeepers) who have different and more demanding preferences.
Gatsios and Karp (1991) in their analysis of customs unions suggest that it might be in one union
member’s best interest to delegate authority to set the external policy to another, more demanding
member. In negotiations between two groups, Perry and Samuelson (1994) and Segendorff (1998)
demonstrate that a group may strategically delegate authority to a tough bargaining representative.

Aghion and Tirole (1997) and Tirole (1999) provide an alternative explanation of the del-
egation of decision-making authority. They consider cases in which the individual with formal
decision-making authority does not know with certainty the consequences of each decision. This
principal may delegate his authority to another party if the other party has a sufficiently lower
marginal cost of investigating the decision (e.g., the other party is an expert) and the other party’s
preferences are sufficiently close to the principal’s.

Our article is also related to several other works in the agency literature. In a multiple-
principal/single-agent setting, articles including Baron (1985), Bernheim and Whinston (1985,
1986), Spiller (1990), and Dixit, Grossman, and Helpman (1997) examine interactions among
multiple principals and a common agent. [n these analyses, the principals noncooperatively choose
individual incentive schemes for the common agent. Our model differs from these multiple-

principal/single-agent models in two important ways. First, our principals must reach a majority
agreement on how to contract with the agent. Second, our principals are unable to contract on all
dimensions, thus giving rise to the strategic need for a gatekeeper.

Related works outside of the agency literature include the noncooperative analysis of coali-
tional bargaining (Chatterjee et al., 1993; Perry and Reny, 1994). Focusing on the gains that
individual members of a coalition receive, both of these works present noncooperative modelling
of endogenous coalition formation, While we also construct a noncooperative model of group in-
teraction, our primary focus is on partial verifiability and the use of gatekeepers and performance
standards in contracting.

2. The model

B Preferences and information. The vector x = (x}, x2) € Ri represents an allocation that
the agent, A. can produce for the principals, N = {1.2...., n}. The principals are indexed by j,
and the number of principals, 1, is odd.?

+ We assume # is odd to avoid the analysis of tie-breaking rules. For more on these rules, see Moulin (1980).
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The agent’s utility from an allocation x is U*(x) = —(8{'x; + B5'x2), where 8. B3 > 0.
The parameters 8;' and g5 can be interpreted as the agent’s marginal costs of producing x| and
x» respectively. (For a diagram of the participants’ utility functions, see Figure 3, which apppears
later in the article.) The agent’s marginal rate of substitution is MRS?, = «® = g{'/8;'. The
agent’s outside option utility is —iz € R. The agent’s indifference curve for her outside option
utility, U#(x) = —i, is her outside option curve, which represents the allocations that are the
upper bound of the amount she is willing to produce. ‘ » _

Principal ;s utility from an allocation x is U/(x) = (B]x, + Bix>), where B/, ﬂzj > 0.
Principal j’s marginal rate of substitution is MRS{2 =al/ = ﬂ{/ﬁf. To ease our characterization
of the equilibria, we normalize each principal’s outside option utility to be equal to v € R.
Principal j’s indifference curve for his outside option utility, U/ (x) = @, is his requirement curve,
which represents the allocations that are minimally acceptable to him.?

‘We make three technical assumptions concerning the principals’ and the agent’s utilities that
ease our characterization of the equilibrium outcomes and permit a cleaner presentation of the
central economic themes of our analysis.

Assumption |. The principals’ preferences satisfy 8| < 87 < -+ < Brand By > B3 > -+ > B3,

Assumption | orders not only the principals’ utilities for the agent’s production in each
dimension, but also the principals’ marginal rates of substitution, ie.. «' < a® < --- < a”.
Accordingly, among all principals, principal | places the greatest value on x», the smallest value
on xy, and the greatest value on x; relative to x,. Similarly, principal n places the smallest value
on x>, the greatest value on x|, and the smallest value on x, relative to x;. Note that o™, where
m = (n + 1)/2, is the median of the marginal rates of substitution. We refer to the principal with
the median of the marginal rates of substitution, principal m, as the median principal.

Assumption | combined with the normalization of the outside option utilities permits the
principals’ requirement curves to be ordered by their intersections on the x| and x, axes. With
regard to the x| axis, we have that v/8] > f)/ﬂf > --- > v/B). This ordering implies that
it the agent produces only x,, then principal 1—the principal who places the smallest value
on the agent’s production of x,—is the least willing of the principals to accept the agent’s
production, and principal # is the most willing. With regard to the x> axis, we have that
U/By < B/f5 < - < v/p5. This implies the opposite. If the agent produces only x», then
principal 1—the principal who places the greatest value on the agent’s production of x,—is the
most willing to accept the agent’s production, and principal # is the least willing.

The position of a principal’s requirement curve in part determines his ability to motivate the
agent to produce x;. Given x, the position of principal j’s requirement curve is determined by
the minimum amount of x, that principal j is willing to accept, i.e.. x; = max{(v — By x3)/B{, 0}.
Given x; = 0, as stated above, Assumption | and the normalization of the outside option utilities
order the principals’ requirement curves. However, for any x» > (), Assumption 1 and the
normalization of the outside option utilities allow any ordering of the principals’ requirement
curves (i.e., the minimum amounts of x, the principals are willing to accept).

Assumption 2. Either ﬁ/ﬁi" > v/B), or [4//32" > 0/B5', or both.

Assumption 2 implies that there are allocations that the median principal and the agent both
strictly prefer to the outside option.

Our last technical assumption on preferences permits us to avoid the cumbersome case in
which the agent and a gatekeeper have identical marginal rates of substitution.

+We do not specify wealth in the participants’ utility functions because we consider environments in which
financial incentives are not used. For example. by institutional rules, the principals may not be permitted to provide
financial incentives to the agent.

3 The normalization of principal j’s outside option utility means that we cannot shift his requirement curve by
changing his outside option utility. Nevertheless, we can shift this requirement curve in a parallel manner by changing
(ﬁ{, 62"}, without changing ﬁ{/ﬁz’. In Corollary 3 and Example 5, we do precisely this so as to shift a principal’s
requirement curve and vary the toughness of the principal.
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Assumption 3. Forany j,a? #a’.

A utility profileis 8 = (B, B}, .... BT, B3, B+ ..., B). In our model, the domain of utility
profiles, B, is all utility profiles, 8, that satisfy Assumptions 1, 2, and 3. (To reduce notation, we
do not write the outside option utilities in the utility profile.)

Finally, we assume that both the principals and the agent are completely informed about
their utilities, the structure of the game, and the allocation produced by the agent. The outside
party, who is required to enforce the contract, can observe the contract that the principals offer
the agent, the agent’s production of x», and the actions that the principals take when they evaluate
the agent’s production. The outside party cannot observe the agent’s production of x,.

0 The three-stage game. We model the interactions among the principals and the agent as
a three-stage game of complete and perfect information. In stage 1, the principals identify the
gatekeeper and set a minimum requirement.® In stage 2, the agent either accepts the contract and
produces an allocation or the relationship ends. If the agent accepts the contract, in stage 3, the
agent’s production is evaluated according to the procedures stated in the stage-1 contract.

In stage 1, the principals first elect a gatekeeper and then determine a minimum requirement.
The gatekeeper election process is an #-round voting process. In each voting round, the principals
vote by roll call (i.e., publicly and sequentially): principal 1 first, then principal 2, on through
principal n. The winner of each voting round is determined by simple (n + 1)/2 majority rule. In
the first round, the principals vote on two gatekeeper options: no gatekeeper (denoted as principal
() versus principal 1. In the second round, the principals vote on the round-one winner versus
principal 2. This process continues in this same manner, with a given round’s winner moving to
the next round. The gatekeeper specified in the contract, G, is the winner of the round-n vote.
To determine the minimum requirement, each principal first proposes a minimum requirement:
principal 1 first, then principal 2, on through principal n. The principals then vote on these
proposals using the same n-round voting process they used to elect the gatekeeper. The minimum
requirement that the principals as a group impose, r2, is the winner of this n-round voting process.

At the end of stage 1, the principals offer the agent a contract C = (G, r).” The contract
establishes not only the terms G and r;, but also specifies the following stage-3 three-step
evaluation process that the principals must follow in evaluating the agent’s production.

If in stage 2 the agent accepted the contract and produced x = (x;.xz), the first step in
the stage-3 evaluation process is verification that the agent’s production satisfies the minimum
requirement, rp. If xo < r;, the relationship ends and the parties receive their outside options. If
X2 > ry, the evaluation process proceeds to the second step. In this step, the gatekeeper G decides
whether to accept the agent’s production. If the gatekeeper does not accept the agent’s production,
the evaluation process ends and the parties receive their outside options. If the gatekeeper accepts
the agent’s production, the evaluation process proceeds to the third step. In this step, the principals
(including the gatekeeper) vote sequentially in the order 1 through n on whether to accept the
agent’s production. If at least (n+1)/2 of the principals approve the agent’s production, the agent’s
output is accepted by the group. If not, the parties receive their outside options.

We examine subgame-perfect equilibria. We say that a contract ¢ = (G, r2) implements x if
C results in the agent’s equilibrium production of x and the principals’ equilibrium acceptance
of x. An allocation x is implementable if there exists a contract C that implements x. We make
one last technical assumption that simplifies the analysis of the subgame-perfect equilibria.

Assumption 4. If the agent is indifferent between accepting and rejecting the contract, the agent

6 The principals need at most one gatekeeper. If two dimensions were unverifiable, there would be equilibria in
which the principals would elect two gatekeepers—one would place great demands on the production in one dimension.
while the other would place great demands on the production in the other dimension. This suggests that with multiple
unverifiable dimensions, a committee as opposed to an individual may serve as the gatekeeper.

7 If ry is a prohibitively high minimum requirement. the principals implement the outside option. Also, the contract
C = (0, 0) means that the principals commit to a full-group evaluation, independent of the agent’s production.

© RAND 2002

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



728 [ THE RAND JOURNAL OF ECONOMICS

accepts the contract. If a principal is indifferent between accepting and rejecting the agent’s
production, x, the principal accepts x.*

We model the relationship between the principals and agent as a sequential majority-
rule voting problem with gatekeeper-and-minimum-requirement contracts for the following four
reasons. First, majority rule is the voting rule employed by many of the institutions that we model.
In addition, the qualitative features of our results extend to any less-than-unanimity voting rule.
Second, we model voting as a sequential process so as to simplify the equilibrium analysis of the
voting problem and emphasize the economics of the contracting problem. Third, in settings with
complete information, no monetary transactions, and the unverifiability of x|, we expect that the
agent would produce the minimally acceptable amount of x,—either zero or the amount of x; that
drives one of the principals to being indifferent to accepting and rejecting the agent’s production.
Our gatekeeper-and-minimum-requirement contracts implement precisely these allocations. Last,
as we noted in the Introduction, these types of contracts are common.

Possible alternative contracts are direct mechanisms. In our model, the principals cannot
directly contract on the agent’s production of x; because the outside party required to enforce
the contract cannot observe x ;. In certain cases, principals would prefer to be able to contract on
x1, and in these cases, this inability to contract x| creates inefficiency (an inefficiency ignoring
the agent’s preferences). Recently, economists have investigated direct mechanisms as a possible
solution to this type of inefficiency (see Moore, 1992). In the context of our model, however, in
any direct mechanism that improves upon our gatekeeper-and-minimum-requirement contract,
the principals play weakly dominated strategies.”

Before proceeding, we would like to note that the stage-1 contract otfered to the agent
affects the agent’s production only if the principals can credibly commit not to renegotiate either
the standards of the contract (i.e., C = (G, r1)) or the stage-3 evaluation procedure. To commit,
the principals and agent can use an outside party to enforce these “standards and procedures” and
prevent renegotiation.

In the institutions we model. these outside parties often take the form of higher-level decision
makers in the institution. In an academic setting, this role may be played by the provost (or board of
trustees). Typically, provosts do not have the information or expertise in each academic discipline
to set the promotion standards or to evaluate the agent’s performance (recall that x, is unobservable
by outside parties). As such, provosts are not part of the stage-1 contract determination process
or the stage-3 evaluation process. Why then, upon faculty approval of a tenure candidate, is it
common for the case to go to a provost before the candidate is granted tenure? We claim that one
of the roles the provost plays in the approval process is to prevent renegotiation by ensuring that
standards are maintained and proper procedures are followed.

Why might a provost be a credible enforcer of standards and procedures and prevent
renegotiation following a substandard performance? We propose two motivations here. First,
if the provost renegotiates a current contract—which states procedures, requirements, and a
possible gatekeeper—then for the consistent application of procedures, he must renegotiate future
contracts.'” In particular, if the provost renegotiates a current contract but fails to renegotiate future
contracts, the future agents can file for legal regress for not receiving “equal treatment.”'! Hence,

8 1t is straightforward, but lengthy, to demonstrate that subgame-perfect equilibrium implies that the participants
tollow the rules in Assumption 4. The proot of this proposition is close to the proof that in any subgame-perfect equilibrium
to the ultimatum bargaining game (with a continuous-offer space), the receiver accepts the sender’s offer if and only if
the receiver weakly prefers the otfer to the outside option.

9 See Dearden and Klotz (2001) for an outline of this argument.

10 Considering the academic example, in many institutions college promotion and tenure committees are elected
for terms shorter than the probationary periods of untenured taculty. In these institutions. tenured faculty with preterences
for tough gatekeepers have incentives to continually elect tough committees so as to maintain standards. See Sobel (2000)
for an analysis of the evolution of standards.

'" [n addition to the threat of legal recourse, institutions may implement consistent procedures because. as Baron and
Kreps (1999) contend. people care deeply about being treated fairly. and procedural consistency is one of the ingredients
of fairness.
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the renegotiation of a current contract carries the cost of future renegotiations. If this cost is
sufficiently large. the provost rejects requests to renegotiate.

Now consider a provost who is not convinced that the future cost is sufficiently large. This
brings us to a second reason a provost may not permit renegotiation. When the contracting parties
approach the provost to request a renegotiation, the provost must discern why the parties would
want to renegotiate a substandard performance. One possibility is that the candidate influenced
the tenured faculty in some way that benefited the tenured faculty but not the university.'? If there
is sufficient suspicion that this type of influence has taken place, then a provost acting in the
interest of the university would not permit renegotiation.

Our contracts and the prevention of renegotiation of the contracts can be enforced not
only institutionally, but also by reputations. Consider environments in which reputations affect
behavior. One important question is whether it is possible that reputations would keep principals
from renegotiating gatekeeper-and-minimum-requirement contracts, but not prevent them from
renegotiating contracts that state they will accept only an outstanding, desired performance (e.g.,
&'). The answer is yes if the future agents (who base their behavior on the principals’ reputations)
can observe whether a gatekeeper-and-minimum-requirement contract is renegotiated, but cannot
observe unverifiable variables.

3. Results

m  For comparison purposes, we first analyze the case of complete verifiability. Following this,
we analyze our primary case——partial verifiability.

Before we begin our formal analysis, we classify five types of allocations and the notation that
we use to represent them. We distinguish these five types of allocations because they correspond
to the five types of equilibrium allocations identified in this section. For the first three types of
allocations, we use an overbar on an allocation x (i.e., X¥) to indicate that the allocation must be
on the agent’s outside option curve. In the first type of allocation, &', the superscript “1”” denotes
an x,-only allocation. In the second type of allocation, %2, the superscript “2” denotes an x,-only
allocation. In the third type of allocation, ¥™*, the superscript “mix” indicates positive amounts
of both x; and x,. In the fourth type of allocation, x!, the superscript “1” denotes an x,-only
allocation, and here the absence of an overbar indicates that this allocation may or may not be on
the agent’s outside option curve. The distinguishing feature of our last allocation type, x", is that
x™ is on the median principal’s requirement curve. The values of these allocations—x', ¥2, x!,
"X and x™ —are characterized below.

o Complete verifiability: x; both x; and are verifiable. When both x| and x are verifiable,
the principals can use a contract that specifies a minimum requirement on either x;. x;, or both
x; and x2. As a result, when both x; and x; are verifiable, the principals can implement any
allocation, x. that (i) the agent is willing to produce (i.e., U*(x) > —i) and (ii) a majority of
principals weakly prefer to the outside option (i.e., #{;j : U/(x) > v} > (n + 1)/2).

Among the set of implementable allocations, for some utility profiles, a majority of principals
strictly prefer the greatest amount of x; the agent is willing to produce. This x,-only allocation
iS”

= arg max xi
RY
subject to
(i) U (x)= —i and
(i) U™(x) > v.

12 §ee Milgrom and Roberts (1988) for more on the economic rationale of influence activities.

13 Note that U” (x) > © and not U™ (x) > © is a constraint in the definitions of thand 30 We require U (x) > ©
. L Lo . S . . . o
in these definitions so that we can distinguish x"™—an allocation on principal /m’s requirement curve—trom ¥-—an
allocation that is not on principal m's requirement curve. Also, by Assumptions | and 2, the constraint U™ (x) > © implies
#{jUx) >0} = (n+ D/2

€ RAND 2002,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



730 / THE RAND JOURNAL OF ECONOMICS

That is, if ' exists, then ¥' = (/B 0). For other utility profiles, a majority of principals
strictly prefer the greatest amount of x» the agent is willing to produce. This x>-only allocation is

X7 = arg max x
X

subject to
(i) U*(x)= —iz and
(i) UM(x) > 1.

That is, if ¥° exists, then ¥% = (0, Q/ﬂz"). Theorem | demonstrates that one and only one
of these allocations, X' or ¥2, is the equilibrium allocation. The allocation that prevails solely

depends on a? compared to a™.

Theorem 1. Suppose x| and x, are verifiable. For any 8 € B, ' is the subgame-perfect
equilibrium allocationifand only ifa® < o™, and & is the subgame-perfect equilibrium allocation
if and only if & > o

Proof. All proofs are in the Appendix.

0 Partial verifiability: only x; is verifiable. Unlike the case where both x; and x, are
verifiable, when only x; is verifiable, there are allocations that a majority of principals and the
agent prefer to the outside option, but the principals cannot implement. When x, is unverifiable,
the reason the principals cannot implement these allocations stems from the fact that the principals
can contract on x; only indirectly through the use of a gatekeeper. Since there is a finite number
of possible gatekeepers, the set of allocations that can be enforced by the use of a gatekeeper is
limited.

For B € B, we denote the set of implementable allocations when only x» is verifiable by
IA(B). In Lemma 1, for each 8 € B, we characterize IA(8).

Lemma 1. Suppose x> is verifiable and x| is unverifiable. Forany 8 € B, x € JA(f) if and only
if the following two participation conditions are satisfied

#{j U (x) >0} > (n+1)/2, (n
Utx) > —a, (2)

and one of the following conditions—which constitute the agent’s incentive compatibility
constraint—is satisfied

x =(0, x2) (3a)
or

x = (x, x2), where x; > 0, and U’(x) = v and a? < o for at least one j € N. (3b)

Moreover, IA(B) # (.

To characterize the equilibrium allocations, we introduce the win set—the set of imple-
mentable allocations that a majority of the principles weakly prefer to all other implementable
allocations. For utility profile 8 and for the set of implementable allocations JA(B), the Win Set is

W(B) = {x € IA(B) : #{j : U/ (x) > U'(x")} > (n + 1)/2 for each x’ € IA(B)}.
Lemma 2 establishes that W () can be characterized by the median principal’s ideal allocations

among [A(8).

Lemma 2. Consider 8 € B. Anallocation x € IA(8)isin W(B)if and only if foreach x’ € 1A(B).
Um('r} Z Um()(',).
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Lemma 3 establishes that if x € W(g), then x must be one of the following four allocations:

-2

X2

X™* = arg max, x| subject to

(iy UMx)= —i.
(i) U"(x) > v, and

(iii) forsome G € {m+1,.... n}, US(x)=vand o? < o¥;
%! = argmax, x; subject to
(i) UAx) = —a,
(i1) U™(x) > v, and
(iii) forsome G € {1...., m—1}U%x)=0and a® < a“;or

x™, where x" is any allocation in
X" = {x UMY >~ UM(x) =70, anda” < a”’}.
Moreover, Lemma 3 completely characterizes W(8).

Lemma 3. Consider 8 € B. If o* > «™. then W(B) = P2 Ifa® < o™, then

W(B) = [x e {{x7, 2™ 2 XM D) U™(x) > U™(x') for each

x € {ELE L X 03]

Specifically, for each 8 € B that satisties «® < ™. Figures | and 2 characterize W(S).

Theorem 2 demonstrates that x is a subgame-perfect equilibrium allocation it and only
it x € W(B). Theorem 2 also characterizes equilibrium contracts. At this point, we want to
emphasize the types of environments—represented in Lemma 3—that result in each of the four
types of equilibrium allocations.

FIGURE 1
THE WIN SET AND EQUILIBRIUM ALLOCATIONS IF o® < o”~!

FU™(x") > UM (™, U™ E™) > U (x™) =7,
then x' = W(f). (Ex.1) | then x™* = w(g). Parameters
do not satisfy
@ U™ (') < U™ (x™, Otherwise, Assumption 2
5 BRav| thenx™X=w(f).  (Ex.2) | XT=W(B) (Ex. 4)
3
g If Um(x1) =ym (imlx)’
8 then {x' x™*} = W (). KX = W(B)
>
=
>
£ it U™ (x> U7 (x2),
o then x' = wi(p).
g 2= W(B)
§ It U™ (x") < UM (%9,
then X2 = W(j). (Ex. 3) T
U™ (x) = UM (32),
then {x'.x%} = W ().
B iy B asv

The agent’s utility parameter, /ff

@ RAND 2002

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



732 / THE RAND JOURNAL OF ECONOMICS

FIGURE 2

THE WIN SET AND EQUILIBRIUM ALLOCATIONS IF o~ ! < a# < o™

I U™ (g m M _ o mix _ 4 Parameters
YR 2 UG = wnen x Wik do not satisfy
Otherwise, X = W (). Assumption 2
RSN
5 By a/v
@
&
g XM= W(p)
N
% /32 u/v
o
5 2
S X2 =w(p)
@
=
B arv

The agent’s utility parameter, ﬁf

If a® > o™, then as in the case of complete verifiability, the agent is sufficiently good at
producing x, that (at least) principals 1 through m strictly prefer ¥> = (0, i/ B3 to any other
allocation the agent is willing to produce. Hence, W(g) = 2.

If * < a™, the characterization of W(8) depends on (i) principal m’s utility function and
(ii) which of the allocations in the set {&”, ™, x!, X"} exist. To illustrate how principal m’s
utility function and the existence conditions determine W(g), Figures | and 2 characterize W(8)
in terms of the marginal valuations, f, the marginal rates of substitution, o = (¢* = B/, a' =
ﬁl' /ﬂzl ...,a = B7/B%), principal m’s utility function, U™ (x) = B{"x; + B87'x,, and the outside
option utilities.

For example, consider the regions displayed in Figures | and 2 for which x' is in
W(p). Assumptions | and 2 imply that this allocation exists if and only if ¢® < o™ ! and
a/p > ©/B""". Hence, as displayed in the figures, x! is in W(8) only if «* < ™! and
a/g > ﬁ/ﬁ;"’". In addition, we can see in Figures 1 and 2 that when x ' exists, whether x! is in
W(p) depends on U™.

The existence condition for x' and principal m’s utility function provide us with intuition
about the types of environments for which x' is in W(B). Specifically, the existence condition,
at < o™ Vand i/ > ﬁ/ﬂf’“l, means that there is a gatekeeper who can enforce the agent’s
production of x'. Note from the definition of x' that this gatekeeper must be one of the principals
who are more demanding of the agent’s production of x; (i.e., one of the principals from 1|
through m — 1). The existence condition also means that the agent is both good at producing x|
(e.i/B > ﬁ/ﬁ;”fl) and relatively good at producing x; (i.e., a® < o™ ").

With regard to principal m’s utility for x', U™(x") = B"x| + By x; of course depends on
A" and BT as well as the position of x'. The position of x! depends in turn on the strength of
the gatekeeper and the agent’s production capabilities. Hence, principal m prefers x' to the other
implementable allocations when he has a sufficiently strong preference for x; (i.e., @™ = g} /8
is sufficiently large), and when the agent is sufficiently good at producing .x; and the gatekeeper
who can enforce x! is sufficiently tough (i.e., x' is sufficiently large). We emphasize a typical
case for which x' is in W(B). as well as the typical cases for which the other three types of
allocations—x 2, ¥™*, and X”—are in W(§), in the examples following Theorem 2. Also, note
that the existence conditions for the four types of allocations as well as important properties about
principal m’s utility function are in the proof of Lemma 3.
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Before proceeding to Theorem 2, we characterize the equilibrium gatekeeper. Specifically.
if the principals elect a gatekeeper, then they elect a tough guy. That is, they elect as gatekeeper
the principal who, given the minimum requirement r». enforces the greatest production of x.
Formally, given r5, the equilibrium gatekeeper is

G = arg max x; subject to UMNxy. ) > —i, Ul r)=tand a? < o’.
JEN
Theorem 2. Suppose that x- is verifiable and x| is unverifiable. Forany g € B for whicha® > o™,
x is a subgame-perfect equilibrium allocation if and only if x = W(B) = x2. For any 8 € B for
which a@” < o™, x is a subgame-perfect equilibrium allocation if and only if

x e WB) = {x e {{F5 ™ ", X"\ 0} - UM(x) > U™(x)) for each

X/ c {{xl')—‘_mix‘xl‘ Xm} \\w}l

Specifically, for each 8 € B for whicha® < o™, the subgame-perfect equilibrium allocations are
those identified in Figures 1 and 2. Moreover, if ¥ is an equilibrium allocation, then C = ((), X7) is
an equilibrium contract. If ™ is an equilibrium allocation, then C = (G*, ¥"*) is an equilibrium
contract. If x' is an equilibrium allocation, then C = (G*, 0) is an equilibrium contract. For any
x™ € X", if x™ is an equilibrium allocation, then C = (m, x7'} is an equilibrium contract.'

Considering the types of contracts that the principles offer to the agent (and the resultant
equilibrium production) Theorem 2 demonstrates that the use of a tough gatekeeper, and also of a
minimum requirement on the verifiable dimension, depends on the agent’s production capability,
the toughness of the possible gatekeepers, and the median principal’s utility of the verifiable and
unverifiable dimensions. Figures 1 and 2 show that the principals tend to use a gatekeeper when
the agent is relatively good at producing the unverifiable characteristic and there is a gatckeeper
who can enforce a sufficiently large production of the unverifiable characteristic; the principals
tend to use a minimum requirement when the agent is relatively good at producing the verifiable
characteristic or there is no gatekeeper who can enforce a sufficiently large production of only
the unverifiable characteristic.

In Corollaries | through 3 we examine three economic features of the equilibria: the agent’s
economic surplus, the agent’s production, and the toughness of the gatekeeper. Corollary 1
establishes the conditions for which the agent earns a positive economic surplus. Roughly, the
agent earns a positive economic surplus if and only if she is relatively good at producing the
unverifiable characteristic and an appropriate gatekeeper who can extract the entire surplus from
the agent does not exist.

Corollary 1. Suppose that x» is verifiable and x, is unverifiable. The agent earns a positive
surplus if and only if she produces either x' (where x! < ¥' so that U (x') > —it) or x (where
U/\(xm) - 4,/—1).

Corollary 2 compares the agent’s equilibrium production of the complete- and partial-
verifiability cases. To ease this comparison, we let x°¥ denote the equilibrium allocation with
complete verifiability and xP* denote the equilibrium allocation with partial verifiability. In
the partial-verifiability environment, we say that the agent underproduces x; if xj* > x{" and

. v v
overproduces xa if x5¥ < xJ.

s

Corollary 2. Consider 8 € B.Ifa® > " thenx{® = xI" and x§* = 7" Ifo* < o™ and x' = &'

- , " o _ . , . v
then xtV = x™ and x$¥ = xI". Ifa? < o™ and x! < %!, then x{* > x" and x5+ < x9".

] S Lo - . . s .
4 The equilibrium allocation is one and only one type of allocation—either ¥-, ¥, x!, or X" —with measure

one over the domain of utility profiles. B. However. this does not imply that the equilibrium allocation is unigue because
if X™ is the equilibrium type. then any allocation x™ € X" is an equilibrium allocation. Also. note that if principal n7 is

the equilibrium gatekeeper, then G* = m.
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Corollary 2 states thatif «® > o™, then with partial verifiability, the principals can implement
the complete-verifiability outcome, ¥2. If @* < o™, however, then partial verifiability may result
in the underproduction of x| and overproduction of x, compared to the complete-verifiability
case. To understand the economics behind the underproduction of x; and the overproduction
of x>, suppose that an ideal gatekeeper is present, i.e., one that has 5’{}’ = v. In this case,
the verifiable outcome is implementable by the use of this ideal gatekeeper. Without this ideal
gatekeeper, however, the underproduction of the x| result emerges because the principals cannot
commit to accepting only t'; i.e., the agent knows that she can supply less x; and still satisfy a
gatekeeper. As a way to reduce the agent’s surplus, the principals sometimes raise the requirement
of xo—hence, the overproduction of x». The unverifiable outcome therefore departs from the
verifiable outcome because an ideal gatekeeper does not exist and the agent would otherwise
earn a greater surplus. In this sense, the production distortions arise because of slackness in the
participation constraints. This result is unlike the Holmstrém and Milgrom (1991) result, where
the shift toward the verifiable variable arises because of the substitutability of the verifiable and
unverifiable variables in the agent’s production and distorted incentives.

Corollary 3 examines the relationship between the ability of a principal to enforce the agent’s
production of x; and whether the principal serves as gatekeeper. To do so, we make a single
principal more demanding (without affecting his marginal rate of substitution) by shifting his
requirement curve in a parallel manner (i.e., decreasing B and ﬂj/ without affecting ﬁ{/ﬁ{).
Corollary 3 shows that if a principal becomes more demanding, but not so demanding that
the agent is unwilling to satisfy his requirements, then the principal will be more likely to be
the gatekeeper. To compare the equilibria of different utility profiles. we let G*(B8) denote the
equilibrium gatekeeper and x*(8) denote the equilibrium allocation for profile 8. In Corollary 3.

we consider only the case in which the principals possibly use a gatekeeper (i.e., a? < ™).

Corollary 3. Consider g and B for whicha? = @* < & = a™; ,Blj = tfi,’ and ﬂ'zj = tfiz’ for some
jENandt > liand B~/ = B~/ 1If G*(B) = j and either @/B{* > o/B/, or /B > o/BJ. or
both. then G*(B) € {j. j'}. If G*(B) = j and either a/B{* > v/B!. or /B > v/B], or both,
then G*(B) = j. If @/} < ©/B] and i/B; < ©/BJ. then G*(B) # .

We now move on to investigate cases for which each of the four types of equilibrium
allocations and contracts identified in Theorem 2 are likely to arise. and highlight the properties
of these equilibria.

Case 1. a* > a™. In both the complete- and partial-verifiability cases, the principals implement
the same allocation—x>.

m

Case 2. o® < o™, The agent is relatively good at producing x;, and (at least) principals m
through n strictly prefer ¥' = (lZ/,BlA, 0) to any other allocation the agent is willing to produce.
But when ., is unverifiable, Theorem 2 demonstrates that the equilibrium allocation must be in
W(B) C {{x*, x™, x!, X™}\0}. Which of these four types of allocations prevails in equilibrium
depends on the ones that exist as well as the median principal’s ideal allocation among those that
exist, which in turn depend on the agent’s production capabilities and the preferences of the
principals (who can serve as the gatekeeper).

To investigate this case in which@? < o™, we construct four three-principal examples—one
example for each type of equilibrium. In each of these four examples, we set U'(x) = x /2 +2x»,
U™x) =x1+x2, UNx) = 2x, +x2/3,and i = v = 1. We vary the agent’s production capabilities.
Specifically, in Examples | through 3, we fix the agent’s ability to produce x, at 8 = 1/5 and
increase her ability to produce x; (i.e., decrease ;). By means of these first three examples, we
emphasize how the agent’s production capabilities, relative to the principals’ preferences, affect
both the type of equilibrium contract that the principals otfer the agent—whether the principals
use a gatekeeper or minimum requirement—and the agent’s equilibrium production. Specifically,
as the agent in these examples moves from being poor to being exceptionally good at producing
X2, the equilibrium contract shifts from a gatekeeper-only contract to a gatekeeper-and-minimum-
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requirement contract to a minimum-requirement-only contract, and the equilibrium allocation
shifts from x' to ¥™* to ¥°. In Example 4, the agent produces x” € X”. We note the four
examples in Figure 1.

Example 1. U*(x) = —(x;/5 + 10x3). Relative to the principals’ preferences, the agent is
exceptionally good at producing x, but is poor at producing x». In fact, the agent is so poor
at producing x> that ¥* and x™* do not exist. However, the allocations x' = (5/8¢",0) = (2, 0)
and X™ do exist, and the principals can implement either x' or any one allocation x™ in X"
All three principals strictly prefer x! to any x™ € X™. Hence, W(8) = x'. To implement x',
the principals state no minimum requirement and specify that principal 1—the tough guy who is
most demanding of the agent’s production of x,—is the gatekeeper (i.e., C* = (1, 0)).

The agent is willing to produce x! = (#/B!, 0) = (5, 0), but there is no gatekeeper who
can enforce an x,-only allocation greater than x' = (f)/ﬁf’w, 0) = (2, 0). Hence, as indicated in
Corollary 2, the agent underproduces x;. In the remaining three examples, the agent not only
underproduces x|, but also overproduces x;.

The agent earns a positive economic surplus. (See Corollary 1.) Although the principals could
impose a minimum requirement and squeeze the entire surplus from the agent, the opportunity
cost in terms of x| of doing so, dx;/dx; |10 = 1/a' = 4, is too large for principals m and 3."
Hence, the agent earns this surplus because the principals are unwilling to impose a minimum
requirement on x; and sacrifice production of x,.

Example 2. U*(x) = —(x,/5+ 11x2/30). (See Figure 3.) Relative to the principals’ preferences,
the agent is good at producing x; and moderately talented at producing x». The allocations

x'=(v/807,0) = (2,0),
¥ =(0.a/p3) =(0.30/11),

i_mix ( :824 D ﬁzo ﬁ]o - ﬁ]A ) _ (L ﬁ)
’ BLBY ~ BB BIBY ~ BT ) \20720

exist, and thus the principals can implement one of these three allocations. The set X™ does not
exist because the agent’s outside option curve lies outside principal m’s requirement curve. Since
principals m and 3 strictly prefer ¥™* to x! and ¥, we have that W(8) = ¥™*. To implement ¥™>
and thus have the agent produce both x| and x, principal 3—the tough guy in this example—
serves as the gatekeeper and the principals set the minimum requirement on x, at ¥ (i.e.,
C = (3, 54/20)). Note that the principals do not elect principal | as the gatekeeper, and therefore
do not implement x', because principal 1 is too weak and cannot enforce a sufficiently large
x;-only allocation. Also, the minimum requirement, r» = ¥, is set to extract the entire surplus
from the agent.

and

Example 3. U%x) = —(x1/5 + x2/4). The agent is so good at producing both x; and x, that
the agent’s outside option curve lies outside of all of the principals’ requirement curves. Hence,
™ and X" do not exist. However, x! = (E/ﬁlc*, 0) = (2.0) and #2 = (0, 4) do exist, and the
principals can implement either one of these allocations. Since principals 1 and m strictly prefer
%7 tox', we have that W(8) = . To implement ¥? = (0, 4) and thus have the agent produce only
x>. the principals use the contract C* = ((J, 4). As in Example 2, the principals set the minimum
requirement to extract the entire surplus from the agent.

Example 4. U*(x) = —(9x,/10 + 11x,/10). The agent is moderately talented at producing x,
(i.c., only principals m and 3 weakly prefer ¥' to the outside option) and poor at producing x».
The allocations x', ¥™*, and ¥ do not exist. However, X" exists, and X" = W (). The principals

'S Even with a minimum requirement, the principals would elect principal 1 as gatekeeper, and the agent would
produce an allocation on this principal’s requirement curve. Hence, the inverse of the slope of principal 1’s requirement
curve determines this opportunity cost.
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FIGURE 3

/Ua(x)zv

x2=(0, 30/11) x™X = (1/20, 54/20)

N

\x1 =(2,0) x'=5, 0)/ A

will implement any one allocation x™ € X". Unlike the other examples, in this example, there is
a continuum of equilibrium allocations—any allocation on principal n2’s requirement curve that
the agent is willing to produce. The continuum of equilibria stems from principal m’s indifference
among these allocations. To implement x™ € X™, the principals offer the contract C* = (m, x3').
The agent earns a surplus if and only if UA(x™) > —i.

We construct one last example that highlights the Corollary 3 result on the toughness of
a principal and whether he serves as the gatekeeper. Note that we relax Assumption 1 in this
example.

Example 5. The gatekeeper is demanding, but not too demanding. We move principal | from being
weaker than the other principals (i.e., principal 1's requirement curve is inside the requirement
curves of the other two principals) to being stronger than the other principals. In doing so.
principal | moves into the gatekeeper role because he becomes sufficiently demanding of the
agent’s performance and then out of the gatekeeper role because he becomes too demanding.

Let U'(x) = Blx; + (3B])x2. This specification means that we manipulate principal
I's preferences, holding B//B; = 1/3 constant. For the remaining participants, let U4(x) =
X1/4+x2/2, UM(x) = x1 /2 + x2/2, and Ul x)=x; +x2/4 % Leti =0 = 1.

For these preferences, depending on the value of B/, the equilibrium allocation is either
¥ = (4/7,12/T7) or x' = (1/B],0). If B] > 7/16, then a majority of principals strictly prefer
™% to x'. In this case principal 3 is the gatekeeper because principal 1 is too weak on the agent’s
performance. If, however, 1/4 < B! < 7/16, then a majority of principals strictly prefer x' to
™ and principal | is the gatekeeper. Lastly, if 8] < 1/4, then the agent is not willing to produce
(1/B!.0). In this case. principal | is not the gatekeeper because he is too demanding.

4. Conclusion

B Weoffered an explanation as to why cities elect chiefs of police and district attorneys who are
“tough on crime,” why military chiefs select commanders who are of “known motivation,” and why
universities sometimes choose tough tenure committees. Given some desired level of production
of a verifiable characteristic, the tough-guy gatekeepers enforce production in the unverifiable
dimensions. We demonstrated that the use of gatekeepers and minimum requirements depends

16 With these preferences, Assumption | is satistied if and only if 1/6 < ﬂll < 1/2.
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on the agent’s production capability, the possible toughness of the potential gatekeepers, and the
principals’ preferences for the verifiable and unverifiable dimensions. Moreover, even with the
use of a gatekeeper to encourage production in the unverifiable dimension, we established that
the agent underproduces the unverifiable characteristic and possibly overproduces the verifiable
characteristic. Finally, the agent benefits from the partial verifiability (i.e., earns a positive
economic surplus) if and only if she is relatively good at producing the unverifiable characteristic
and an appropriate gatekeeper who can extract the entire surplus from the agent does not exist.

Appendix

B Proofs of the lemmas, theorems. and corollaries follow. Note that the proof of Theorem 1 follows the proot of
Theorem 2. Lemmas | through 3 and Lemma A1 will be used to prove Theorems | and 2.

Proof of Lemma . We prove the second sentence of Lemma |.

Only if. Assumption 4 and the subgame-perfect equilibrium imply that the principals accept the agent’s production only if
condition (1} is satisfied. (For a detailed proof of this statement, see Lemma A | below.) Assumption 4 and subgame-perfect
equilibrium imply that the agent’s equilibrium production satisfies condition (2). Assuming conditions (1) and (2) are
satisfied, for any contract C = (/. r2). the agent's utility-maximizing production, x, satisfies either condition (3a) or (3b).

If. If x satisfies conditions (1), (2), and (3a), then the contract C = (i, x2) implements x: and if x satisfies (1), (2), and
(3b), then the contract C = (j, x2) implements x.

We now prove the last sentence of Lemma 1. Assumptions | and 2 imply that there exist allocations that satisty
conditions (1) and (2). Hence, IA(8) # 0. Q.ED.

Proof of Lemma 2. We define the following two sets: B'(x) = {x/ € TA(B) : x{ > x; and ¥’ # x}: and
B (x)={x' € 1A(#): x5 > xand x #x}

Only if. Suppose to the contrary that x € W (), but there exists x’ € 1A(8) such that U™ (x) < U"(x"). If x' € B'(x),
then foreach j, j > m.Ud(x) < U/(x');andif x' € B*(x),thenforeach j. j < m.U/(x) < U/(x'). Hence,x ¢ W(B).
A contradiction.

If. Suppose U™ (x) > U™ (x’)foreachx’ € 1A(g).Foreach j, j > m,andforeachx’ € B'(x),wehave U/ (x) > UJ(x);
and for each j, j > m, and foreach x’ € B%(x), we have that U/(x) > U/ (x"). Moreover, by Assumption 2. U™ (x) > ©.
Hence, x € W(B). Q.ED.

Proof of Lemma 3. We first demonstrate that W(8) ¥ 0. To do so, we establish that for any € B, at least one of
the allocations—z2, ¥™*, x!, and x™ € X" —exists. The definitions of these allocations and Assumptions 1 and 2
imply the following existence conditions of each of these allocations. The allocation %7 exists if and only if 8 satisfies
i/B > v/B™. The allocation x! exists if and only if g satisfies o? < =1 and ﬁ/ﬁl" > ﬁ/ﬁ'l"’] . The allocation ¥™*
exists if and only if # satisfies #/8]' < v/B}. @ < o”, and U"(x™*) > ©. Lastly, the set X" exists if and only if #
satisfies a? < a™, l?/ﬁl" > v/g. and H/f}? < ©/BY. Since these existence conditions span B, at least one of these
allocations exists. Hence, W(g8) # 0.

We now demonstrate that tor any g € B, if x € W(g), then x must be one the allocations—x=. ™%, x! and
x™ e X™. To do so, we partition JA(f) into five subsets. For each subset, we characterize the allocations that are
candidates for W(8), and Lemma 2 permits us to characterize these candidates in terms of U”'. The first subset consists
of xz-only allocations in JA(8). By strict monotonicity of U™, if (0, x3) € W(B), then (0, x2) = x2. Second. consider
x1-only allocations in IA(g). Principal m strictly prefers x! (if it exists) or ", 0 € X7 (if x' does not exist) to any
other x;-only allocation in fA($). Hence, if (x|, 0) € W(B), then (x;, 0) is either xor (x{". 0y € X™. Third. consider
the allocations in JA(B) that are on principal j’s, j € {m+1,.... n}, requirement curve. Principal m strictly prefers ¥/
(which we define as the allocation on j’s requirement curve with the greatest amount of x- that the agent is willing to
produce) to any other allocation on j’s requirement curve. Now, if &/ # ¥ and ¢ < @, then U (F™X) > UM(&/).
Moreover. if ¥/ # %2 and o? > ™. then U™(¥%) > U™(%’). Hence, if an allocation in this third subset is in W(B).
then it must be either ¥™* or ¥2. Fourth, consider allocations in JA(8) that are on principal j's, j € {1,..., m—1},
requirement curve. Principal m strictly prefers i’ (which we define as the x;-only allocation on j's requirement curve)
to any other allocation on j’s requirement curve. Now, if ¥+ x'. then principal m strictly prefers x! to ¥’. Thus. if
an allocation in this fourth subset is in W(#), then it must be x!. Fifth, any allocation in JA(8) that is on principal nt's
requirement curve (i.e., x” € X™)is a candidate for W(g).

We now have that W(8) # 0 and any x € W(B) is either 12, gmix ¢ loor x™ € X™. Since Lemma 2 implies that
x € W(B) C {x% ¥ x! X} Dif and only if U”(x) > max{U"(x"): x’ € {¥2, 3" x' X"} \ 0}, we can use
the existence conditions stated earlier in this proof for the allocations in {¥°, ¥™*, x!, X"} and U™ to characterize the
set W(B). (See Figures | and 2.)
© RAND 2002,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



738 / THE RAND JOURNAL OF ECONOMICS

To complete the proot, we need to prove three points abou[ the leldnonshlp between U and the characterization of
W(A). First, if @® > o™, then U™(¥%) > max{U"(x") : &' € {"* x' X"} \ @}, and T2 = W(g). Second, for any
x™ e X™, U™(x") = 0. Hence, principal m weakly prefers any allocation that exists from {2, ¥, x!, } 1o ¢ € X
Third, if @® < o™ and 2™ and 7 exist. then U"(x™) > U™(¥2).  Q.ED.

Lemma Al, stated below, is needed to prove Theorems 1 and 2. Lemma A1 analyzes the sequential voting process
that is used to determine the gatekeeper and minimum requirement. In the gatekeeper election process, let a* represent
an equilibrium outcome to the continuation game that follows the election of principal k as gatekeeper. In the minimum
requirement election process, after the minimum requirement proposals have been made, let «* represent an equilibrium
outcome to the continuation game that follows the election of principal k's minimum requirement proposal. In both of
these elections—the gatekeeper and minimum requirement election process—the principals are effectively voting over
the set of allocations A = {a?, a'. ..., a'}t CIAB).

One important note is that to simplify our description of the voting process, we specify one specific order of voting
in our sequential voting process. It is straightforward to demonstrate that Lemma Al is invariant to any order in which
the principals vote on the alternatives and any order by which the principals state their votes. Moreover, the results in our
main propositions are invariant to the ordering ot the principals in their vote on whether to accept the agent’s production
as well as the ordering of the principals in their statements of their candidates as minimum requirements.

Lemma Al. Consider the sequential voting process over A = {a"o, al.o., a"} C LA(B). Suppose {ANW(B)} 0. The
allocation a* € A is the outcome of a subgame-perfect equilibrium if and only if a* € W(B).

Proof. Consider the last round of voting, and suppose that the principals vote on a* versus «* " We evaluate two cases.
Case 1. a* € W(B) and ' g W(p).Let Ny = {j € N Uiy > U’mA/)}. The assumption «* € W(8) implies
#IN i > (n+1)/2. We proceed with the following steps.

Step 1. Consider any node for which (i) the last principal, denoted as j'. from N 4 votes and (ii) (n + 1)/2 — |
of the principals have voted for a*. If j’ votes for «*. then his preferred allocation, «*, wins. Hence, subgame-perfect
equilibrium requires that if (7 + 1)/2 — 1 of the principals have voted for ¢*, then j* must vote so that «* wins.

Step 2. Consider any node for which (i) the next-to-last principal, denoted j”. from N« votes and (ii) (n + 1)/2 —
of the principals have voted t'or ak It principdl J" votes for a*, then Step 1 implies that at least one of the principals who
vote after him also votes for @*. Hence. if j” votes for a*, then «* wins. Therefore, subgame-perfect equilibrium requires
that if (n + 1)/2 — 2 of the principals have voted for «*, then j* must also vole so that ¢* wins.

We continue with this process to Step (n + 1)/2.

Step (n+1)/2. Comider any node for which (i} the (n + 1)/2th-to-last principal from N« votes and (ii) none of the
principals have voted for ¢*. By the same analysis as in Step 2, we can establish that il zero of the principals who state
their votes prior to this principal have voted for a*. then subgame-perfect equilibrium requires that this principal vote so
that ¥ wins.

The result #{N «| > (n + 1)/2 implies that the path of any strategy profile to this last round of voting that results
in the election of a*' must include at least one of the nodes specified in Steps | through (n + 1)/2. Moreover, if any of
these nodes is reached, we demonstrated that * wins. Hence, if ¢* is considered in the last round of voting, then in any
subgame-perfect equilibrium to this last round of voting, a* wins.
kgt e W(f). We can repeat the proof of Case 1 with the exception of the principal who is indifferent between
a* and a*". (Note that for any B € B, only one principal can be indifferem between a* and «*’.) When this indifferent
prmupdl can affect the outcome, in some equilibria he votes so that of wms and i 1n [he remaining equilibria votes so that
a*' wins. By repeating the proof of Case 1 we can demonstrate that both «* and ¢*" are equilibrium outcomes to the last
round of voting in which these two allocations are considered.

Consider any voting round in which the principals vote on ¢® versus some other allocation. Suppose that a*” is the
outcome of the equilibrium to the continuation game that follows " winning in the round under consideration. Working
backward from the last round, it follows from our analysis of the last round that a*" is the outcome of a subgame-perfect
equilibrium to the round under consideration if and only if " is in W(p). Q.ED.

Case 2. a

Iz

Proof of Theorem 2. Lemma | characterized JA(8). That is, for each possible stage-1 contract. Lemma | characterized
the outcome of the equilibrium play in stages 2 and 3 of the game. Hence. to complete the proof of Theorem 2, we need
only determine the stage-1 equilibrium contract. To do so, we partition B into five subsets and characterize the equilibrium
contract(s) and allocation(s) for each one. We use W(g), which we characterized in Lemma 3. to partition B. Note that
because these five subsets partition B. we characterize the equilibrium contract(s) and allocations(s) for each 8 € B.

Subset 1. All § £ B for which ¥° = W(g). We first characterize the equilibrium minimum requirement. Suppose
the principals elect no gatekeeper. Subgame-perfect equilibrium requires that at least one principal (notably the median
principal if no other principal) nominate > = )—sz as the minimum requirement. Next, if no gatekeeper has been elected and

"f has been nominated, then Lemma Al and the assumption ¥° = W(#) imply that the outcome of any equilibrium
to the minimum requirement voting process is ry = ¥
© RAND  2002.
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We now have that if the principals elect no gatekeeper, then they impose r> = \22 and implement ¥°. Moreover, any
principal, j. for whom U/ (¥%) > t could be (an ineffective) gatekeeper and the principals would implement 2. In the
gatekeeper election. Lemma A and the assumption ¥> = W(#) therefore imply that the principals elect either no principal
or one of these ineffective gatekeepers. An ineffective gatekeeper is equivalent to no gatekeeper.

Subser 2. All B € B for which x' = W(g). By the same type of analysis as for subset 1, the principals set r» = 0 and
elect principal G* as gatekeeper.

Subser 3. All B € B for which x™* = W(g). By the same type of analysis as for subset 1. the principals set ry = .E;“i"‘
and elect principal G* as gatekeeper.

Subset4. All B € B for which X" = W(g). In nominating candidates as minimum requirement, principal m is indifferent
between any ry € [0. ¥7'). where ¥ denotes the allocation on principal m’s requirement curve for which the agent earns
zero economic surplus. Hence, by subgame pertection. principal m can nominate any r2 € [0, ¥5'). By Lemma Al, any
minimum requirement > € [0, 7] that has been nominated is the outcome of a subgame-perfect equilibrium. In the
gatekeeper election. Lemma A1 and the assumption X" = W(g) imply that the principals elect principal m.

Subset 5. All B € B8 for which W(#) contains multiple allocations from {&. ¥, x'. X" }. For example. suppose
ot < a"hﬁ/ﬁi“ > o/B) ".ﬁ/ﬂé“ < v/, and U™ (x"y = U™(E™%), In this example, principal m is indifferent between
xUand ¥X and W(B) = {x', ¥ }. Then. by the same type of analyses as for the previous subsets, the principals set
the minimum requirement and elect the gatekeeper who implements either x' or ¥V, Q.ED.

Proof of Theorem I. By the proof of Theorem 2. subset 1, if a® > o™ then % is the outcome of any equilibrium. If

a’ < " the proof that T is the outcome of any equilibrium is analogous to the proof of Theorem 2, subset 1. Q.ED.

Proof of Corollary 1. The proof follows directly trom Theorem 2. Q.ED.
Proof of Corollary 2. The proof follows directly trom Theorems | and 2. Q.E.D.

Proof of Corollary 3. If either a/B;* > o/p7. or it/B3 > ©/B3. or both, then for A. there exists x € R that the agent
is willing to produce and principal j is willing to accept. Hence. for fi. principal j can serve as gatekeeper. With the
movement from £ to f, of the allocations in {37, ™%, x!, X"'}, either T°, ¥™* x! X" or none of these allocations
changes. Recall from Theorem 2 that the equilibrium allocation is determined by U"'. Suppose j # m. If j # m, with
the movement from g to B. only ™% or x* possibly changes. If ¥™*(8) # X™X(B). then by the definition of ¥™%, we
have that U™ (Z"*(B)) < U™(T™*(B)). By a revealed preference argument. x*(8) € {x*(#). ¥™*(B)}. Similarly, if
M) £ x"(B). then x*(By € {x*(B), x (B I T(B) = ¥™%(B) and x'(B) = x'(B). then x*(B) = x*(B). Suppoase
j = m. If j = m. with the movement from 8 to B. only X’ can possibly change. Also. with the movement from
£ to B. because prisy = fi'l" //3'1". principal m’s ranking of the allocations in {.i‘l. FOX ] } is unaffected. Hence.
A e B {XMBI})

Ita/p) < f‘/ff]'v and it/B3 < 1"'//:51". then principal j cannot serve as gatekeeper because he would reject any x the
agent is willing to produce. Q.ED.
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RAND Journal of Economics Turnaround Times

First Decision (%)

Month 0-3 4-6 7-9 10+ No Decision Total
Submitted  Months Months Months Months (%) (%)
Jan. 2000 50 35 15 — — 100
Feb. 74 22 4 — —_ 100
Mar. 37 52 4 7 — 100
Jan.-Mar. '00 53 37 8 2 — 100
April 2000 58 24 14 4 —_ 100
May 50 34 1N 5 — 100
June 31 35 23 11 — 100
April-June '00 46 32 15 7 — 100
July 2000 50 24 26 — — 100
Aug. 29 46 18 7 — 100
Sept. 39 42 3 16 —_ 100
July-Sept. ‘00 38 38 15 9 — 100
Oct. 2000 36 39 6 19 — 100
Nov. 48 26 4 22 — 100
Dec. 25 43 18 14 — 100
Oct.-Dec. '00 36 37 9 18 — 100
Jan. 2001 58 24 3 15 — 100
Feb. 50 19 8 23 — 100
Mar. 22 30 22 26 — 100
Jan.-Mar. '01 45 23 10 22 — 100
April 2001 48 30 11 n — 100
May 45 37 7 1" — 100
June 28 33 10 29 — 100
April-June '01 37 33 10 20 — 100
July 2001 31 39 17 13 — 100
Aug. 48 33 — 15 4 100
Sept. 33 38 — 25 4 100
July-Sept. ‘01 37 37 6 17 3 100
Oct 2001 — 46 18 9 27 100
Nov. 7 40 20 6 27 100
Dec. 11 34 22 11 22 100
Oct.-Dec. '01 6 40 20 13 21 100
Jan. 2002 22 48 4 — 26 100
Feb. 19 46 4 — 31 100
Mar. 37 33 4 — 26 100
Jan.-Mar. ’02 26 42 4 — 28 100

Note: Figures as of November 14, 2002.
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