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APPENDIX 

Adjacent Category Logit Model 
 
Let: 

• u = 1… U as the total number of universities that were ranked for every year in the 
observation period.   

• t = 1… T as the number of the time period for which we observe the university ranks (T = 
8 in our sample). 

• r = 1… R as indexing ranks, where for top 50 universities we study R = 50.   
• utX =  the matrix of explanatory variables for university u at time t.  (These variables are 

the ones used by USNews)   

• rπ = the probability of observing rank r, such that 0≥rπ , ∀ r = 1… R and ∑
=
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For adjacent categories r and r+1, we define the adjacent-categories log-odds unit (LOGIT) 

as (Goodman 1983; Simon 1974): 
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where, Yut is the rank for the university u at a given year t and 

),|(),( )1()1( −− == tuututtuutr YXrYPYXπ .   

To incorporate explanatory variables, the logarithm is specified as a linear function of the 

explanatory variables (e.g., McCullagh 1980): 
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As is the case in logit models with multiple categories, ),( )1( −tuutr YXπ  is defined as: 
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The probability specification in Equation 4 leads to the familiar likelihood function (L): 
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where, utrI  is an indicator function that equals 1 if rYut = , else it equals 0.   

As we model lag of rank as an explanatory variable in Equation 4, Tt ,...2= .  To recognize the 

hierarchy inherent in the ranking we specify ββ )( rRr −=  and γγ )( rRr −= .  Once parameter 

estimates are available by maximizing the logarithm of Equation 4, we calculate the probability 

of change in rank as: 
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With rY tu =− )1(  modeled as an explanatory variable, we can use Equation 8 to calculate the 
probability of prYut += , ∀ p = 0, 1, 2…, ∀ r = 1,…R-1.       


